RoboCupRescue-Robot League Team Red Knight RoboRescue Squad, United States of America

Yellow Robot: Timothy Tursich, Jim Galt
Blue Robot: Sydney Crump, Gregory DeJute, John Fleischhacker, Michael Kosiek
Green Robot: Bucky Phillips, Joe Martyn, Joe Schirmers
Red Robot: James Muston, Teddy Pechacek, Sean McConville, Kellen Anderson
Advisor: Timothy E. Jump

Benilde-St. Margaret's School 2501 Hwy 100 S. St. Louis Park, MN USA 55416 tjump@bsm-online.org http://www.bsm-online.org

Abstract

- High School Engineering Class
 - o One team/four robots
- Each robot responsible for an individual task in the competition
 - o Yellow Robot: Mapping
 - o Blue Robot: Thermal Imaging/Victim Identification
 - o Green Robot: CO₂ Recognition/Victim Identification
 - o Red Robot: Victim Tags/Sound Recognition/Visual Victim Identification
- Teamwork Oriented
 - o Robots work together to complete tasks in least amount of time
 - o If one robot malfunctions, mission can still be completed with other three
- The following pages are divided into four sections, detailing each of the four individual robots.

Benilde-St. Margaret's School Red Knight RoboRescue Squad Yellow Robot

1. Team Members and Their Contributions

• Jim Galt Mechanical design, Mapping apparatus design

• Tim Tursich Interface development, Mapping apparatus programming

2. Operator Station Set-up and Break-down

• Set up laptops and establish wireless communication to robot

3. Communications

- Wireless 802.11A
- "RemoteAccess" program
- Mini ITX board on robot

4. Control Method and Human-Robot Interface

- Vehicle Maneuverability:
 - o Remote Teleoperation using T6YG Controller
 - Operator drives the robot by manually calling the subroutines (forward, backward, left, right, etc.) through the Interactive C 4 interface
- Data Collection and Interpretation:
 - o Partial Autonomy Collision detection/avoidance under review
 - o "Remote Access" program to communicate with the onboard computer
 - o Robot uses mini ITX board for remote communication
 - o Robot is controlled through subroutines written in Interactive C 4

5. Map Generation/printing

- Laser distance sensor makes a full 360 degree sweep of the room, relays readings to the onboard computer
- Readings from the distance sensor and rotary encoder are analyzed and converted into (x, y) coordinates and then plotted in a graph in Excel
- Conversion equations:

```
A = (\text{Encoder's pulses per revolution}) / 360 \\ R = Count of rotary encoder clicks \\ D = \text{Analog laser distance measurement} \\ x \ coordinate = \cos ( [A*Pi] / [180*R]) * D \\ y \ coordinate = \sin ( [A*Pi] / [180*R]) * D \\ \end{cases}
```

6. Sensors for Navigation and Localization

- Video camera(s)
- Infrared proximity sensors for collision detection/avoidance under review

7. Sensors for Victim Identification

• Robot only maps the environment, so no sensors for victim identification are used

8. Robot Locomotion

- Four electric Titan Monster 550 15,000 RPM motors
- Four wheel tank differential drive (Fig 1)
- Belt transmission (Fig 2)
- 33 to 1 gear ratio

9. Other Mechanisms

- Mapping apparatus (Fig 3)
- Possible boom for mapping apparatus under review

10. Team Training for Operation (Human Factors)

- Extensive knowledge of the subroutines used for locomotion
- Knowledge of how to operate Interactive C 4
- General computer operation skills
- Ability to interpret and navigate using streaming video from a video camera

11. Possibility for Practical Application to Real Disaster Site

- Mapping system should work well enough for application to a real disaster site
- Small size (Fig 4)
- Easily portable
- Self-contained power source
- Wireless communication
- Areas in need of improvement
 - o Little/no shielding for the wiring harness and internal components of the robot
 - o Robot is too fast, movements can be jerky and inaccurate
 - Wheels used are not extremely versatile, do not grip well on dusty or debris-covered surface
 - o No heat shielding for protection against fire and other sources of extreme heat

12. System Cost

- Total system cost (with direct access to machine shop and 3D printer): \$3,500
- Total system cost (without direct access to machine shop and 3D printer): approximately \$5,400
- Parts:
 - o 2x Innovation First Victor 884 speed controller (\$229.90)
 - Innovation First (http://www.ifirobotics.com/)
 - o 4x Power Maxx Peak 2400 mAh battery (\$70.00)
 - o 2x Traxxas 3906 E-Maxx motors, gearboxes (\$323.50)
 - Traxxas (http://www.traxxas.com)
 - o 1x Buss ATC fuse block (\$25.00)
 - Bussman (http://www.bussman.com)

- o 9x Double flange, 10 groove, nylon pulleys (\$53.82)
 - Smallparts (http://www.smallparts.com)
- o 5x Double flange, 40 groove, nylon pulleys (\$46.55)
 - Smallparts
- 2x Bando synchro-link 260XL timing belt (\$9.30)
 - Smallparts
- o 1x Bando synchro-link 140XL timing belt (\$3.55)
 - Smallparts
- o 8x Wheel hubs (\$40.00)
 - Smallparts
- o 4x 6" Skyway caster wheels (\$18.00)
 - Skyway (http://www.skywaywheels.com)
 - 1x Futaba 53004 servo, R127DF receiver, T6YG controller (\$200.00)
 - Futaba (http://www.futabarc.com)
- o 1x BEI E20 rotary optical encoder (\$200.00)
 - BEI Technologies, Inc. (http://www.beiduncan.com)
- o 1x Banner LT3NU laser distance sensor
 - Banner Engineering (http://www.bannerengineering.com)
- o 1x Handyboard w/ Expansion board (\$350.00)
 - Gleason Research (www.handyboard.com)
- o Tyco Electronics switch W31-X2M1G-50 (\$15.00)
 - Tyco Electronics (http://www.tycoelectronics.com)
- o Aluminum Parts (\$10.00)
- o Wiring materials (\$50.00)
- o 1x Onboard computer (TBD)
- o 1x Control Laptop (TBD)
- Fabricated Parts (\$1,500 total without 3D Printer/ \$250 with 3D Printer)

o Battery Mount

o Pulley Block (left – the right pulley block is a mirror of the left)

o Fuse Plate Spacer

o Wheel Plug

o Wheel Spacer

Fig 1

Fig 2

Fig 3

Fig 4

Benilde-St. Margaret's School Red Knight RoboRescue Squad Blue Robot

1. Team Members and Their Contributions

Michael Kosiek Mechanical DesignSydney Crump Mechanical Design

• John Fleischhacker Operator, Electrical Design, Mechanical Design

• Gregory DeJute Electrical Design, Mechanical Design

2. Operator Station Set-up and Break-Down

• Portable laptop station with wireless connection to robot

3. Communications

- 802.11A wireless network
- Remote Access computer program
- Mini ITX board on Robot

4. Control Method and Human-Robot Interface

- Vehicle Maneuverability
 - o Remote control of robot using Futuba Skysport6 75MHz Controller
 - Operator drives robot using Remote Access through laptop keyboard to control robot
- Data Collection and Interpretation
 - o Partial Autonomy Collis ion detection/avoidance being considered
 - o Remote Access program to communicate with the onboard computer
 - o Robot uses mini ITX board for remote communication

5. Mapping

• See Yellow Robot

6. VI. Sensors for Navigating

- Cameras
 - One fixed mini wireless cameras with microphone
- Other Driving Sensors
 - o Considering use of proximity sensor (Banner Sensor)

7. Sensors for Victim Identification

- Thermal Imager
 - o Irisys 1011 Universal Thermal Imager
 - Picks up infrared wavelengths that objects emit.

8. Robot Locomotion

- Wheeled (Fig 8.1.1) and (Fig 8.1.2)
 - o Two 6" wheels with rubber tread covering
 - Two front skids
- Motors (Fig 8.2.1)
 - o Titan 550 15,000 RPM
 - o Opposed Positioning (differential drive)
 - o Direct drive to wheels
- Gear Box (Fig 8.3.1) and (Fig 8.3.2)
 - o 11:3 gear reduction into transmission
 - 3:1 gear reduction using custom fabricated combination gear
 - o Two Speed transmission
 - Futaba servo motors control transmission speed

9. Other Mechanisms

- Additional Booms
 - O Designing an arm for the thermal imaging camera so it can be raised to look over debris that might be in the way.

10. Team Training for Operation (Human Factors)

- Learning Remote Access Program
- Practice driving the robot using the keyboard
- Practice analyzing Thermal Image to detect body heat

11. Possibility for Practical Application to Real Disaster Site

- Small Robotic design
 - o Portability
 - Quick, direct access to disaster site
 - o Easily navigates disaster sites
- Operation
 - Easily controlled from a wide range of distance from the disaster site using the Remote Access Program
 - Does not operate in 2.4 GHz
- Independent
 - o Runs using its own power source
 - o Not tethered

12. System Cost

- Total system cost (with direct access to machine shop and 3D printer): \$2585.60
- Total system cost (without direct access to machine shop and 3D Printer): \$5117.60
- Parts
 - o 2x Titan Motor: \$24/each
 - Traxxas (Traxxas.com)
 - o 2x Piranha Battery: \$16/each
 - Hub Hobby
 - o 2x Pivoted Axels: \$8
 - Traxxas (Traxxas.com)
 - o 2x Transmission Gear Box (Gears, Casing, Bearings): \$49.75/each
 - Traxxas (Traxxas.com)
 - o Aluminum Chassis: \$10 (Fig 12.1)
 - o 2x Wheels: \$4.50/each
 - Skyway
 - o 2x 8 Tooth 32 pitch gear: \$3.54/each
 - Small Parts Incorporated
 - o 2x 24 Tooth 32 pitch gear: \$7.01/each
 - Small Parts Incorporated
 - Irisys 1011 Thermal Imager: \$1,800
 - (http://www.irisys.co.uk/)
 - Purchased from: Instrumentation.com (distributor)
 - o 2x Futaba Speed Controller: \$114
 - Futaba-rc.com/
 - o Fuse Panel \$30
 - Bussman.com
 - o Electrical Wiring/Fuse: \$12
 - o Stationary Camera: \$38
 - Purchased from Computer Geeks
 - o Onboard Computer (Intended Part No Price)
- Fabricated Parts (\$250 with 3D Printer / \$2,232 total without 3D Printer)
 - O Battery Box/ Fuse Holder

o Outside Bearing Blocks (2)

o Inside Bearing Blocks (2)

o Wheel Hub (2)

o Gear Plate (2)

o Gear Plate Covering (2)

o Combination Gear Axel Cover (2)

o Motor Spacers (4)

o Skid (2)

Fig 8.1.1

Fig 8.1.2

Fig. 8.2.1

Fig 8.3.1

Fig 8.3.2

Fig 12.1

Benilde-St. Margaret's School Red Knight RoboRescue Squad Green Robot

1. Team Members and Their Contributions

Joseph P. Martyn
 Bucky T. Phillips
 Joe D. Schirmers
 Controller Development
 Mechanical Design
 Operator

2. Operator Station Set-up and Break-Down (10 minutes)

- Notebook Computers wired to wireless hub
- Wireless hubs link to robots

3. Communications

- 802.11A Wireless Standard
- Utilize remote access program

4. Control Method and Human-Robot Interface

- Vehicle Maneuverability
 - o Remote Control of robot using Futaba Skysport T6YG 75MHz Controller
 - o Remote Access using laptop keyboard to control robot with basic directional control
 - o Proximity sensors for collision detection and avoidance
- Data Collection and Interpretation
 - Mini-ITX motherboard mounted to robot communicating to hub through 802.11A Wireless Card
 - o Wireless control using Remote Access program

5. Map generation/ printing

• See Yellow Robot

6. Sensors for Navigation and Localization

- Systems to monitor navigation
- Video camera
- Proximity Sensors

7. Sensors for Victim Identification

• CO2 Sensors will be used to locate CO2 emissions and identify victims

8. Robot Locomotion

- 2 electric motors which run through a gearbox with a 11:3 ratio
- Axle attached to a pulley with a belt
- Belt attaches to a larger pulley which is directly attached to the wheels with 1:4 ratio

9. Other Mechanisms

• CO2 sensor omni-directional boom

10. Team Training for Operation (Human Factors)

TBD

11. Possibility for Practical Application to Real Disaster Site

- Small and easily transportable
- Low cost
- Rechargeable and portable power source

12. System Cost

- Total System Cost (with direct access to machine shop and 3D Printer): \$3,239.38
- Total System Cost (without direct access to machine shop and 3D Printer): approximately \$5,369.38
- Parts:
 - 2x Futaba Speed Controller (\$228.00)
 - www.futaba.com
 - o 2x Wheel (\$16.00)
 - o 1x Fuse Panel (\$30.00)
 - www.bussman.com
 - o 1x Power Switch (\$10.00)
 - www.digi-key.com
 - o Electronics/Miscellaneous Wiring (\$35.00)
 - o 2x Double Flange, 10 groove, nylon pulleys (\$11.96)
 - www.smallparts.com
 - o 2x Double Flange, 40 groove, nylon pulleys (\$18.62)
 - www.smallparts.com
 - o 2x One-sided Nylon Timing Belt Size 18 (\$9.80)
 - www.smallparts.com
 - o 2x Titan (\$48.00)
 - www.traxxas.com
 - o 2x Piranha Battery 7.2 volts (\$32.00)
 - o 1x Onboard Computer (\$700.00)
 - o 1x Control Laptop (\$1500.00)

- Fabricated Parts / (\$250 with 3D Printer/\$1500 total without 3D Printer)
 - o Wheel Spacer

o Wheel Plug

o Bearing Block

o Front Skid

o Battery Case/Axle Holder

Fig 1

Fig 2

Fig 3

Fig 4

Benilde St. Margaret's School Red Knight RoboRescue Squad Red Robot

1. Team Member/Contribution

Teddy Pechacek: CAD design

• Kellen Anderson: Maintence/Operator

James Muston: Team Manager Sean McConville: CAD design

2. Operating Station and Breakdown

• Set up laptops and establish wireless communication to robot

3. Communication

- Wireless 802.11A
- "Remote Access" program

4. Control Method and Human Robot Interface

- Vehicle Manoeuvrability:
 - o Remote Teleoperation using T6YG Controller
 - o Operator drives the robot by manually calling the subroutines (forward, backward, left, right, etc.) through the Interactive C 4 interface
- Data Collection and Interpretation:
 - Partial Autonomy Collision detection/avoidance under review
 - o "Remote Access" program to communicate with onboard computer
 - o Robot uses mini ITX board for remote communication
 - o Robot is controlled through subroutines written in Interactive C 4

5. Map Generation/ Printing

• See Yellow Robot

6. Sensors for Navigation and Location

- Proximity sensors for wall avoidance
- Camera for visual drive

7. Sensors for Victim Identification

- Camera (high power zoom)
- Microphone (low decibel)

8. Robot Locomotion

- Dual wheel differential drive
- 1:4 pulley system
- Opposing skid stabilization

9. Other Mechanisms

• Power rotating platform for 44x zoom camera

10. Team Training for Operation

TBD

11. Possibility for practical application to real disasters

- Small/ affordable
- Easily portable
- Portable power source

12. System Costs

- Total system cost (with direct access to machine shop and 3D Printer): \$850
- Total system cost (without direct access to machine shop and 3D Printer): approximately \$3,460
- Parts:
 - o 1x Batteries Plus Battery \$20.00
 - o 2x Bosch Drill motors/planetary gears \$40.00
 - o 1x Buss ATC Fuse Panel \$30.00
 - Bussman (http://www.bussman.com)
 - o 1x Digi-key Power Switch \$10.00
 - o 1x Futaba FP-R12 7DF Remote controller/servos \$200.00
 - Futaba (http://www.futabarc.com)
 - 2x Innovation First Victor 883 Speed controllers \$229.90
 - Innovation First (http://www.ifirobotics.com/)
 - o 2x 6" Skyway caster wheels \$9.00
 - Skyway (http://www.skywaywheels.com)
 - o 2x Double flange, 40 groove, nylon pulleys \$18.62
 - Smallparts (http://www.smallparts.com)
 - o 2x Double flange, 10 groove, nylon pulleys \$11.96
 - Smallparts
 - o 2x Bando synchro-link 140XL timing belt \$3.55
 - Smallparts
 - 4x Wheel Hubs \$20.00
 - Smallparts
 - o Wiring materials \$35.00
 - o Parts Misc.- \$30.00
 - o Aluminum Parts \$21.85
 - o 1x Onboard computer \$700.00
 - o 1x Control Laptop \$1500.00

- Fabricated Parts / (\$250.00 with 3D Printer/\$2793.00 total without 3D Printer)
 - o Axle spaces

o Battery case

o Bearing Blocks

o Gear wedges

o Motor cases

o Skids

o Wheel Plugs

Figure 2

Figure 3